
the direction m = E/k; T*, radiation deactivation time of molecules; k, mean absorption co- 
efficient; R*, probability of radiation deactivation of the molecules. 
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METHODS FOR CALCULATING THE ANISOTROPY OF RADIATION BASED ON 

AN APPROXIMATION OF THE RADIATION PROPERTIES OF SURFACES 

S. P. Rusin UDC 536.3 

The spatial distribution of radiation is examined in calculating radiation heat 
transfer between surfaces in a diathermal medium. 

Contemporary technological processes require a more detailed study of the spatial dis- 
tributlon of radiation in calculating radiation heat transfer between surfaces in a dlatherm- 
al medium. 

Radiation heat transfer for surfaces with arbitrary emissivities and reflectivities was 
analyzed very completely in [i] by assuming that the temperature distribution and the optical 
parameters are given and using the integral equation 

Ief~M , sM) = e (M, sM) I o (M) -+- .[ r (M, s M, SNM ) %if(N, sum ) K (M, N)dFu, (1)  
F 

where lef f and Io are, respectively, the effective and blackbody radiation intensities; s, 

direction of emission (reflection); r, brightness coefficient; E, directional emissivity; 
K(M, N) - d~ (M, N)/dFN, where d@ is the elementary angular coefficient and lef f is the quan- 
tity sought. 

Polygraphic Institute, Moscow. Translated from Inzhenerno-Fizlcheskli Zhurnal, Vol. 
36, No. 2, pp. 296-302, February, 1979. Original article submitted April 20, 1978. 
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Equation (i) gives an exact description of radiation heat transfer between real surfaces, 
but it is difficult to apply in engineering calculations since the theoretical and experi- 
mental study of the brightness coefficient and the emissivity as functions of direction is a 
considerably more complex problem than the investigation of hemispherical characteristics of 
emission and reflection. At the present time, the spatial distribution of energy in emission 
and reflection can be predicted by electromagnetic theory only for certain optically smooth 
surfaces [2]. For many engineering materials the brightness coefficient does not vary 
smoothly with the angles of incidence and reflection. The presence of peaks in the range of 
small solid angles severely complicates the experimental investigation of the radiation prop- 
erties of surfaces. This is apparently the reason why some experimenters failed to note the 
so-called "off-specular" peaks in determining the reflectivities of materials [2]. It was 
pointed out in [3] that in a detailed experimental investigation of the reflectivity for a 
single sample of the surface of a material and a single angle of incidence it is desirable 
to obtain about 20,000 experimental points. 

On the other hand, even if the emissivity and reflectivlty are known, the solution of 
Eq. (i) represents a complicated computational problem. Thusl if the spatial distribution 
of radiation is approximated by 50 zones, a system of 2500 linear algebraic equations must 
be solved. The problem is still more complicated if the emissivity and reflectivity are giv- 
en in tabular form. 

Thus, the problem of taking account of the anisotropy of radiation is complex and must 
be solved by the methods of optics, thermophysical experiment, and computational mathematics. 
It should be noted that it may turn out that mathematical models of surface emission and re- 
flection which are acceptable from the point of view of the description of optical proper- 
ties may not be suitable for the numerical solution of Eq. (i), while mathematical models of 
radiation properties of surfaces which are convenient for numerical methods may not describe 
the emission and reflection mechanism correctly. 

Mathematical Models of the Reflection and Emission of Surfaces. In general, the reflec- 
tion mechanism is determined by reflection from the surface itself and by the scattering of 
radiation from layers beneath the surface. Generally, emission also is determined not only 
by the surface layer but also by internal layers. A s,-~mary of methods for calculating rad- 
iation properties of surfaces when only a thin surface layer emits and reflects is given in 
[4, 5]. The experimental data confirm the electromagnetic theory predictions for certain 
clean, optically smooth materials, but for most such materials encountered in practice these 
theoretical predictions are not in good agreement with experiment, 

Since optical properties are very dependent on surface geometry, and since commercial 
materials are more or less rough, the present trend is to formulate mathematical models which 
take account of surface topography. Torrance and Sparrow [6] proposed to model a rough sur- 
face by a system of mirrorlike facets which reflect according to the laws of geometrical op- 
tics. This model can predict the presence of off-specular peaks. In [7] reflection from a 
rough surface was modeled on a computer by the Monte Carlo method. It was noted in [7] that 
an adequate description of surface geometry requires a measurement of the rms distance be- 
tween roughness elements as well as the rms value of the roughness. In addition, the rela- 
tive fraction of the flat part of the surface is important. As in [6] it was assumed that the 
roughness elements reflect specularly. In [7] experimental data were compared with calcula- 
"ions in which the rms distance between roughness elements was determined by trial and error. 
Agreement was obtained for a number of cases. 

The emissivity of clean optically smooth materials can be determined by electromagnetic 
theory. Experiment and calculations agree for some materials [5, 8, 9]. There is amathemat- 
ical model of spectral directional radiation for rough metal surfaces [i0]. 

It should be noted that surfaces can be made with prescribed radiation properties to 
control radiation heat transfer. Thus, in [ii] theoretical and experimental analyses were 
made of the directional radiation properties of V-groove cavities with specularly reflecting 
walls and perfectly black bottoms. It was shown that such grooves can ensure the emission 
and absorption of radiation in strictly definite directions. Data in [12] can be used to 
make artificially roughened surfaces by "dead-end" drilling. The problem was treated for 
cylindrical cavities with conical bottoms under the assumption that the surface of a cavity 
radiates and reflects diffusely. Since the grooves and cavities are of appreciable size it 
is necessary to consider the possibility of temperature variations over the depth of a groove 
or cavity in artificially roughened surfaces. In this case it is expedient to use optical- 
geometrical functions. 
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Taking Account of the Anisotropy of Radiation. Because of the complexity of the solu- 
tion of integral equation (i), it is common practice to employ mathematical models which 
either treat both emission and reflection as diffuse, or emission as diffuse and reflection 
as specular. It has been assumed that the real case lies between these two, but it was shown 
in [8] that these cases are not limiting, and predictions made with the first and second mod- 
els can differ from the experimental values by more than 50%. 

i. Anisotroplc-Diffuse-Anlsotroplc Model. This model takes account of the anlsotropy 
of self-radlatlon, and then assumes that all reflections except the last are diffuse. In the 
last reflection the anisotropy of the radiation is again taken into account. It is assumed 
that in all reflections except the last the estlmate 

r~i" (M) < r (M, s~, SN~ ) < r~a x (M). (2) 
is valid. This estimate is convenient when the reflection is not too different from diffuse. 
From now on we omit the subscript on rd(M). 

It should be noted that the estimate (2) assumes that Klrchhoff's law is violated. As 
a result of the transformation of Eq. (i) we have the following system of equations (detalls 
of the derivation are given in [13]): 

]d (M) =/df, t (M) + r~i(M) .[ ]d (N) K (M, AT) dFN , 
F 

left(M, s M) = Is (M, sM) + ~" r ( g ,  s M. ssM ) 
r 

x [I s (N, s~v,~ ) + I d (N)] K (M, N) dF~. 

(3) 

where I d ref,* (M) = rd(M)f I s 
F 

quired quantity lef f (M, raM)" 
solvent: 

(N) K (M, N) d F N. Solving (3) and (4) we calculate the re- 

The value of I d (M) can also be expressed in terms of the re- 

I d (M) = lrdef,, (M) q- r d (M) ~ lrdef, (A t) r (M, N) dF#, (5) 

where the resolvent is determined from the corresponding integral equation or by llght-model- 
ing methods [14]. 

2. quasldlffuse Model. The quasldlffuse model is based on the assumption that reflec- 
tion ls diffuse and the reflectlvlty itself depends on the direction of incidence of the 
radiation. 

It is expedient to apply thls model, e.g., when the angle between plane surfaces is not 
less than 90 ~ Then multiple reflections are almost completely determined by the diffuse 
component of the reflection from the surface, and the directional component of the radiation 
escapes into the surrounding space. 

According to the quasldiffuse model of reflection, Eq. (i) can be written as 

Id ( ~  = ~reKl (AQ -~ .[ rd(M, SNM ) I d (N) K (M, N) dFN, (6) 
F 

~ff(M, sM) = & (M, sa) + ld(# 0, (7) 

where 

Ir~hi. (M) = .[ rd(?r 0 1 s (N, SNM ) K(M, N) dFN. 
F 

In t h i s  model the  an i so t ropy  of the  e f f e c t i v e  r a d i a t i o n  i s  complete ly  determined by the  
an t so t ropy  of the  s e l f - r a d i a t i o n .  I f  r d i s  a s tep  func t i on ,  i t  fo l lows from (6) t ha t  

n(M) 
Id(M) = Idef,, (A~ + ~ Rj(M) .[ Id(N) K(M, N)dFN. 

I=1 Fj(M) 
(8) 
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The solution of Eq. (6) can be expressed  in terms of the  reaolvent 

d , Id(~0 = I~,(~0 + ~ ~(M, s~) I~, (N) r(m, ~ a~ 
F 

3. Diffuse-Specular Model. In this model it was assumed that reflection from a surface 
can be written as the sum of diffuse and specular components which are independent of direc- 
tlons, and self-radlatlonwhich is diffuse. Then (i) is transformed into 

Id(M) = Isd(h~ -F r d (M) ~ I~l(N) Sn (M, N) dFN + A,~+,, 
F 

sp 
left(M, s M) = Id(M)+ RsP(M)~tt(N, SNM). 

(9) 

(10) 

It was shown in [13] that both upper and lower bounds can be estimated for An+x, The 
function Sn(M, N) characterizes the transport of radiation as a result of specular reflec- 
tions. In using (9) the necessary number of reflections n must be chosen in accord with the 
accuracy requirements. This does not take account of the well-known diffuse-specular model 
[15] which was obtained from physical considerations and actually is based on the fact that 
it is necessary to take account of an infinite number of reflections. In view of this the 
expression for Sn(M , N) as n § ~ must be obtained analytically or by light-modeling methods, 
which is not always possible. The application of Eqs. (9) and (i0) permits the use of the 
diffuse-specular model for systems with complex geometry for a small number of reflections 
with a subsequent estimate of accuracy. 

4. Anlsotropic-Specular Model. In contrast with the diffuse-specular model it was as- 
slimed that the specular component depends on the angle of incidence of the radiation and the 
emissivity in accord with Kirchhoffls law is anlsotroplc. Then 

I d (M) = I~(M) + .l rd(M' s ~ )  |/d (N) 
F 

-'b ]~(N, snM)] cos OMN doMn + A2 ' (11) 
�9 

~(M, s M) = :(M)+ ~P(M, sM)+ R~P(M, s~P)~nKN, s~), (12) 
where 

A~. = S ~ (M, s~,~,) R* 0v, sF:,) 1~ff(N~, sF:,) cos 0ML,# ao~,L,. 
F 

By using the method of successive substltutlons~ Eq. (ii) can be transformed in such a 
way that it will characterize not one but n reflections. Both upper and lower bounds of An+1 

can be estimated, e.g., lef f (N) ~ Io (N) and lef f (N) ~ I s (N), 

5. Model Based on the Decomposition of Eq. (i) into an Equivalent System of Equatlons, 
The kernel of Eq. (i) can be written as the sum of kernels 

r(M, s~, s~M)K(M, fir)= rd(M)K(M, N)+rD(M, sin, s~M)K(M, fir). (13) 

Then we have the equivalent system 

ID(M, sM) = ~(M)+ ~ r~M, sM, SNM) ID( N, SNM) K(M, N) dF~ + .I rD(M' sM' SNM) Id(N) K (M, .IV) dF~, (14) 
F F 

Id(M) = I d (M) + rd (M) .i :d (N) K (M, N) dF~ + rd (M) .I ID(N, s~)  K (M, N) e f t .  (15) 
F F 

The solution of (15) can be expressed in terms of a resolvent and substituted into (!4). 

We note that (15) is considerably simpler than the initial Eq. (I), while (14) is equal- 
ly complex. However, if the diffuse component of the radiation is large, (14) can be solved 
with a lower accuracy than (15), but with a negligible effect on the quantity soughtl 

/eft(M, sM) = 1D(M, sM) q- I d (M). 
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In conclusion, a number of trends should be noted in the development of methods of cal- 
culating radiation heat transfer in a system of real surfaces. 

At the present time there is a trend toward developing effective methods of calculating 
radiation properties of surfaces from the point of view of geometrical and physical optics. 
However, no one model encompasses a sufficiently broad range of materials. 

The practice of calculating radiation heat transfer in the presence of anisotropy has a 
substantial effect on the formulation of mathematical models of the radiation properties of 
surfaces. Thus, as a result of approximating the emissivity and reflectlvlty, new integral 
characteristics depending on a small number of parameters appeared, but there has been a lag 
in the experimental investigation of these characteristics. Photographic methods of testing 
the mathematical models of the radiation properties of surfaces are helng more and more wide- 
ly employed since they permit the determination of the directional distribution of radiation 
in a single experiment [16, 17]. Extensive use is made of the methods of solving ill-posed 
problems in processing the experimental data [18, 19]. 

In taking account of the anlsotropy of radiation the method of decomposing the initial 
complicated equation into an equivalent system of simpler equations is promising. In this 
case almost complete use is made of the mathem-tlcal apparatus for calculating radiation 
heat transfer by diffusely radiating and reflecting surfaces and the corresponding applied 
programs or diffuse emission. In addition, when the initial equation is decomposed into an 
equivalent system each equation can be solved by the optimum numerical method, depending on 
the specific conditions. Thus, if the norm of the kernel is small, iterative methods are 
very effective, and other equations can be solved by less accurate but simpler methods such 
as direct methods of the calculus of variations [20]. In addition, llght-modellng methods may 
be effective with this approach. 

NOTATION 

I, brightness intensity; r, brightness coefficient; F, surface; s,dlrectlon of emission; 
M, N, P, N., L~, points on surface; m, solid angle; 8, angle between normal to surface and 
direction ~f e~isslon; p, reflectlvity; Subscripts: eff, effective; s, self; d, diffuse; sp, 
specular; ref, reflected; D, directional. 
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